山海鲸可视化

主成分分析图(Principal Component Analysis,PCA)

山海鲸可视化,提供一站式数字孪生解决方案,致力于打造一款人人都会用的,零代码数字孪生工具。

简介

主成分分析图(Principal Component Analysis,PCA)是一组变量通过正交变换转变成另一组变量的分析方法,来实现数据降维的目的。转换后得到的这一组变量,即是我们所说的主成分。主成分分析图能帮助我们直观地感受样本在降维后空间中的分簇和聚合情况,这在一定程度上亦能体现样本在原始空间中的分布情况。

适用场景

用于判断组内样本的重复性是否足够好(图上本组内各点的距离是否足够近)以及组间样本的差异是否足够大(图上组间各点之间的距离是否足够远)这两个指标。

优势:以方差衡量信息的无监督学习,不受样本标签限制,可减少指标选择的工作量。

缺点:主成分解释其含义往往具有一定的模糊性,不如原始样本完整,贡献率小的主成分往往可能含有对样本差异的重要信息,也就是可能对于区分样本的类别(标签)更有用。

图例

  1. 在需要观察数据分散情况时,可以直观地用主成分分析图来表示。

  1. 在需要观察各样品分散情况时,可以用主成分分析图进行清晰的展示。

数字孪生大屏应用案例

目前,我们山海鲸可视化资源中心提供了丰富的数字孪生大屏案例,在网页上就可以快速体验大屏。

  1. 智慧港口 • 全景监测

  1. 智慧工厂生产线

  1. 澳门特别行政区 3D 地图-科技风 3D 城市三维地图

相关图表

散点图

矩阵散点图

系统图

X-Y 图

参考资料

  1. https://blog.csdn.net/weixin_40007541/article/details/113471454
  2. https://www.bioinformatics.com.cn/plot_basic_PCA_plot_034
  3. https://www.cnblogs.com/myownswordsman/p/r-ggplot-pca.html